Best Management Practices for Carinata Production in the Southeast

RAMDEO SEEPAUL | Post Doctoral Associate University of Florida
Sheeja George, Ian Small, Jim Marois, David Wright
Brassica carinata Summit | Quincy, FL | March 30, 2017
History of *Brassica carinata* Research at UF, NFREC

- Evaluation of carinata germplasm in 2011-2013, Quincy, FL

- **FDACS grant 2013-2016**
 1. Genotype ecoedaphic adaptability screening – Jay, Quincy, Citra
 2. Production best management practices
 3. Providing ecosystem services
 4. Crop diversification
 5. Carinata oil to ‘drop-in’ fuels conversion
 6. Seed meal supplementation in ruminant nutrition
 7. Ruminal fermentation and animal performance
History of *Brassica carinata* Research at UF, NFREC

- Partnership – UF, ARA, Agrisoma, Mustard 21

- **Agrisoma, Mustard 21 grant 2013-2018**
 1. Multi-location yield performance testing - at Jay, Quincy, Live Oak and Citra, FL
 - AGR044 sib lines (22 entries)
 - Advanced frost tolerant, early maturing lines (20 entries)
 2. Dicamba tolerant mustard screening
 3. NAM project seed increase – 3150 rows
 4. Seed increase of mutagenized *B. carinata* DH lines
 5. Early maturity carinata nursery – 1668 rows
Agronomic Research Scope at UF, 2015-2017

Best management practices for *B. carinata* production

Planting date (October, November, December)

Row spacing and seeding rates
- Four row spacing (7, 14, 21, 35"")
- Four seed rates (2.7, 5.4, 8, 10.7 lb/acre)

Tillage method and N rates
- Three tillage methods (no till, disk, and chisel)
- Four N rates (0, 40, 80, and 120 lb N/acre)

Timing and N rates
- Application of 80 lb at planting, bolting, and flowering with differing application combinations

N uptake and plant nutrient partitioning
- Four N rates (0, 40, 80, and 120 lb N/acre)

Harvest management

Timing of chemical desiccation or swathing

Plant Growth Regulator
- Two PGR (Paczol and Cycocel applied at bolting, flowering, 2 varieties)

Sulphur and Nitrogen Rate
- Four S (0, 15, 30 and 45 lb/acre) and 4 N rates (0, 40, 80, 120 lb/acre)

Irrigation timing
- Irrigated vs non-irrigated, canola vs carinata, bolting vs flowering vs pod set

Cropping systems
- Integration of carinata in sod-based rotation as a winter cover crop

Fungicide screening
- Screening 7 fungicides for Sclerotinia control

Multi-location Yield Performance Testing – Jay, Quincy, Live Oak and Citra, FL

AGR044 sib lines (22 entries)
- Advanced frost tolerant, early maturing lines (20 entries)

Herbicide evaluations – Jay

Herbicide carry over effects on carinata establishment

Greenhouse studies – Quincy

Determine N and S effects on early-season growth, physiology, and reproduction of carinata and canola

Determine the effect of irrigation on yield critical stages of carinata and canola

Seed increase nurseries – Quincy

NAM Project Seed Increase
Seed Increase of Mutagenized *B. carinata* DH lines

Selection nursery – Quincy
Early maturity carinata nursery
<table>
<thead>
<tr>
<th>Location</th>
<th>Members</th>
<th>Research Interests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N. DiLorenzo</td>
<td>Ruminant nutrition, Animal development</td>
</tr>
<tr>
<td>WFREC, Jay</td>
<td>R. Leon, M. Mulvaney</td>
<td>Herbicide chemistries, Crop protection, Agronomy Variety trial</td>
</tr>
<tr>
<td></td>
<td>P. Troy</td>
<td>Agronomy Variety trial</td>
</tr>
<tr>
<td>SVAEC, Live Oak</td>
<td>N. Dufault, B. Colvin</td>
<td>Pathology, Agronomy Variety trial</td>
</tr>
</tbody>
</table>
Brassica carinata

Characteristics of a competitive dedicated energy crop

Infrastructural fit
- Fits current agricultural infrastructure of harvesting, handling, storage, transportation, processing etc.
- Crush facilities available

Opportunity for value enhancement
- High value seed meal as well as chemical co-products

Crop timing conducive for production and consistent feedstock supply
- Planted on fallowed underutilized lands
- Planted in fall and harvested in spring in the southeast
- Low water footprint
- Double cropped for increased farmer revenue-leaving May-October for summer crop

Desirable agronomics and oil chemistry
- Superior agronomic traits (drought, heat tolerant, little seed shatter, non-dormant)
- Non edible industrial oil feedstock with proven conversion technology
- Highly desirable fuel chemistry for ‘drop in’ aviation fuels
Growth stages: from seed to seed

Emergence/seedling establishment
- Stage 0 [0.0–0.8] Germination and emergence
- Stage 1 [1.0–1.2] Leaf production
- 25 DAP

Vegetative
- Stage 2 [2.0–2.2] Stem elongation
- 70 DAP

Bolting
- 95 DAP

Flowering
- Stage 3 [3.0–3.9] Flower bud development
- 120 DAP

Seed development/maturation
- Stage 5 [5.1–5.9] Pod development
- 145/175 DAP

Seed desiccation
- 190 DAP
Winter Oilseed Crops in the Southeast

Seed yield (lb/acre)

- **Carinata**
- **Canola**
- **Camelina**
Maximizing Yield Potential

3500 lb seed/acre
200 gal oil/acre

Yield Protecting Factors
- Harvest management
- Weed control
- Insect control
- Disease control
- Irrigation

Yield Building Factors
- Crop improvement
- Crop rotation
- Plant nutrition
- Tillage
- Plant density
- Planting Date

Seed Yield
- 1000 Seed Weight
- Reproductive branches
- Pod no., seeds per pod

Best Management Practices
Changing weather pattern

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall (cm)</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>0</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

- **October**: Rainfall = 0 cm, Temperature = 0 °C
- **November**: Rainfall = 5 cm, Temperature = 10 °C
- **December**: Rainfall = 10 cm, Temperature = 15 °C
- **January**: Rainfall = 15 cm, Temperature = 20 °C
- **February**: Rainfall = 20 cm, Temperature = 25 °C
- **March**: Rainfall = 25 cm, Temperature = 30 °C
- **April**: Rainfall = 30 cm, Temperature = 30 °C
- **May**: Rainfall = 0 cm, Temperature = 25 °C
- **June**: Rainfall = 5 cm, Temperature = 20 °C

Rainfall
- Long-term avg
- 2013/2014

Temperature
- Long-term avg
- 2013/2014

Changing weather pattern

- 2013/2014:
 - Rainfall: 0-30 cm
 - Temperature: 0-30 °C
- 2014/2015:
 - Rainfall: 0-30 cm
 - Temperature: 0-30 °C
- 2015/2016:
 - Rainfall: 0-30 cm
 - Temperature: 0-30 °C

Month
- October
- November
- December
- January
- February
- March
- April
- May
- June
Variety Selection

- AAC A110 has high yield potential, earlier maturing and has 0.5% higher oil content than its predecessor AAC A100.

- AAC A120 has greater yield potential than AAC A110.

- AVANZA 641 was identified as a high yielding cold tolerant variety in Florida and currently in commercial production in the southeast.

- Ongoing research in region-specific crop genetics.
Advanced yield trials
Performance of *Brassica carinata* Genotypes (NFREC, Quincy, FL)

<table>
<thead>
<tr>
<th>Seed Source</th>
<th>Genotype</th>
<th>DAP</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>1000 SW\dagger</th>
<th>Seed Yield lb/ac \ddagger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrisoma</td>
<td>AGR400-A1</td>
<td>117</td>
<td>8</td>
<td>4.1</td>
<td>9.4</td>
<td>7.4</td>
<td>8.3</td>
<td>53.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR044-381</td>
<td>119</td>
<td>25</td>
<td>4.9</td>
<td>25.6</td>
<td>6.7</td>
<td>9.3</td>
<td>52.3</td>
<td>3.1</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR439-A</td>
<td>116</td>
<td>40</td>
<td>3.3</td>
<td>8.8</td>
<td>4.7</td>
<td>8.2</td>
<td>53.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR207-A2</td>
<td>117</td>
<td>25</td>
<td>5</td>
<td>54.4</td>
<td>6.9</td>
<td>8.3</td>
<td>53.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR207-11</td>
<td>115</td>
<td>18</td>
<td>4.8</td>
<td>27.5</td>
<td>6.4</td>
<td>7.9</td>
<td>53.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR349-M2</td>
<td>119</td>
<td>23</td>
<td>4.6</td>
<td>50.0</td>
<td>8.7</td>
<td>9.7</td>
<td>53.1</td>
<td>2.9</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF45-46S</td>
<td>355</td>
<td>3.8</td>
<td>1.8</td>
<td>54.1</td>
<td>3.7</td>
<td>3.7</td>
<td>3538</td>
<td></td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR159-1E</td>
<td>140</td>
<td>2</td>
<td>53.7</td>
<td>2.8</td>
<td>3.5</td>
<td>3462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR136-CD</td>
<td>124</td>
<td>10</td>
<td>5</td>
<td>25.6</td>
<td>5.6</td>
<td>8.9</td>
<td>52.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>110999EM</td>
<td>118</td>
<td>70</td>
<td>5</td>
<td>33.1</td>
<td>5.3</td>
<td>8.1</td>
<td>52.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR489-4</td>
<td>117</td>
<td>18</td>
<td>2.5</td>
<td>5.0</td>
<td>6.3</td>
<td>8.5</td>
<td>53.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>110994EM</td>
<td>118</td>
<td>53</td>
<td>5</td>
<td>71.9</td>
<td>4.9</td>
<td>7.9</td>
<td>53.7</td>
<td>3.1</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR045-221</td>
<td>120</td>
<td>53</td>
<td>4.9</td>
<td>36.3</td>
<td>5.0</td>
<td>8.5</td>
<td>53.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>110998EM</td>
<td>119</td>
<td>48</td>
<td>5</td>
<td>40.6</td>
<td>4.4</td>
<td>8.0</td>
<td>52.4</td>
<td>2.8</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR868-3</td>
<td>119</td>
<td>25</td>
<td>4.8</td>
<td>48.1</td>
<td>4.8</td>
<td>8.4</td>
<td>52.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR840-A2</td>
<td>117</td>
<td>40</td>
<td>5</td>
<td>81.3</td>
<td>4.6</td>
<td>8.7</td>
<td>53.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR859-1</td>
<td>111</td>
<td>18</td>
<td>3.9</td>
<td>10.6</td>
<td>6.0</td>
<td>8.4</td>
<td>53.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AAC A110</td>
<td>119</td>
<td>48</td>
<td>5</td>
<td>67.5</td>
<td>6.0</td>
<td>8.3</td>
<td>52.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR185-K2</td>
<td>118</td>
<td>40</td>
<td>5</td>
<td>71.9</td>
<td>4.0</td>
<td>8.5</td>
<td>53.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>7.AA60-3.4</td>
<td>119</td>
<td>15</td>
<td>4.9</td>
<td>58.8</td>
<td>6.7</td>
<td>9.2</td>
<td>52.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>3118</td>
<td>117</td>
<td>30</td>
<td>4.5</td>
<td>43.8</td>
<td>4.3</td>
<td>8.3</td>
<td>53.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR002-C22</td>
<td>116</td>
<td>25</td>
<td>5</td>
<td>64.4</td>
<td>5.4</td>
<td>9.0</td>
<td>54.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>110910EM</td>
<td>118</td>
<td>43</td>
<td>5</td>
<td>69.4</td>
<td>4.2</td>
<td>8.2</td>
<td>52.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>110996EM</td>
<td>117</td>
<td>45</td>
<td>5</td>
<td>70.0</td>
<td>4.1</td>
<td>8.2</td>
<td>52.3</td>
<td>2.8</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF5-5228</td>
<td>115</td>
<td>38</td>
<td>4.8</td>
<td>63.1</td>
<td>4.8</td>
<td>8.0</td>
<td>52.7</td>
<td>2.8</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF5-5463</td>
<td>118</td>
<td>70</td>
<td>4.8</td>
<td>41.3</td>
<td>5.4</td>
<td>8.2</td>
<td>51.8</td>
<td>3.3</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF5-5467</td>
<td>115</td>
<td>53</td>
<td>5</td>
<td>64.4</td>
<td>5.4</td>
<td>8.5</td>
<td>53.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>080814EM-J</td>
<td>111</td>
<td>40</td>
<td>5</td>
<td>71.9</td>
<td>4.5</td>
<td>8.1</td>
<td>52.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR215-13</td>
<td>116</td>
<td>55</td>
<td>5</td>
<td>38.1</td>
<td>4.7</td>
<td>8.1</td>
<td>53.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>5228</td>
<td>116</td>
<td>25</td>
<td>5</td>
<td>71.3</td>
<td>7.6</td>
<td>8.0</td>
<td>52.1</td>
<td>2.9</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF5-5464</td>
<td>115</td>
<td>53</td>
<td>5</td>
<td>35.0</td>
<td>3.9</td>
<td>8.3</td>
<td>54.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>111000EM</td>
<td>115</td>
<td>70</td>
<td>4.8</td>
<td>33.8</td>
<td>3.4</td>
<td>8.2</td>
<td>53.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR409-2</td>
<td>117</td>
<td>55</td>
<td>5</td>
<td>53.8</td>
<td>2.9</td>
<td>8.8</td>
<td>50.2</td>
<td>2.5</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF5-5478</td>
<td>114</td>
<td>70</td>
<td>4.3</td>
<td>20.0</td>
<td>4.7</td>
<td>8.6</td>
<td>53</td>
<td>2.9</td>
</tr>
<tr>
<td>Agrisoma</td>
<td>AGR215Q-G2</td>
<td>117</td>
<td>50</td>
<td>5</td>
<td>52.5</td>
<td>4.6</td>
<td>8.3</td>
<td>54.3</td>
<td>2.9</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF5-5458</td>
<td>118</td>
<td>55</td>
<td>5</td>
<td>64.4</td>
<td>3.8</td>
<td>8.1</td>
<td>51.5</td>
<td>2.9</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF5-5475</td>
<td>118</td>
<td>50</td>
<td>5</td>
<td>78.1</td>
<td>3.4</td>
<td>8.4</td>
<td>51.9</td>
<td>3.0</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF5-5457</td>
<td>118</td>
<td>53</td>
<td>5</td>
<td>73.8</td>
<td>3.4</td>
<td>8.5</td>
<td>52.4</td>
<td>3.0</td>
</tr>
<tr>
<td>AAFC</td>
<td>AAF5-5422</td>
<td>115</td>
<td>68</td>
<td>5</td>
<td>28.1</td>
<td>5.2</td>
<td>8.5</td>
<td>53</td>
<td>3.2</td>
</tr>
<tr>
<td>Mean</td>
<td>117</td>
<td>42</td>
<td>4.7</td>
<td>46.5</td>
<td>5.1</td>
<td>8.4</td>
<td>52.9</td>
<td>2.9</td>
<td>2982</td>
</tr>
<tr>
<td>Error df</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>80</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>2.6</td>
<td>15.2</td>
<td>0.68</td>
<td>23.8</td>
<td>2</td>
<td>0.63</td>
<td>1.5</td>
<td>0.52</td>
<td>764</td>
</tr>
<tr>
<td>CV</td>
<td>1.6</td>
<td>25.9</td>
<td>10.5</td>
<td>36.6</td>
<td>28.7</td>
<td>5.4</td>
<td>2.1</td>
<td>10.9</td>
<td>18.3</td>
</tr>
<tr>
<td>R-sq</td>
<td>0.87</td>
<td>0.77</td>
<td>0.74</td>
<td>0.69</td>
<td>0.45</td>
<td>0.44</td>
<td>0.43</td>
<td>0.52</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Variety Selection

- Earlier maturing frost tolerant varieties
- Advanced lines being tested in several locations
- Specific to the Southeast US
- Opportunities to increase yield by 40%
<table>
<thead>
<tr>
<th>Genotype</th>
<th>Jay</th>
<th>Citra</th>
<th>Live Oak</th>
<th>Quincy</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A2B</td>
<td>2322</td>
<td>2822</td>
<td>4358</td>
<td>5384</td>
<td>3722</td>
</tr>
<tr>
<td>M-06</td>
<td>1042</td>
<td>3698</td>
<td>4828</td>
<td>5308</td>
<td>3719</td>
</tr>
<tr>
<td>M-04</td>
<td>1482</td>
<td>3624</td>
<td>4839</td>
<td>4858</td>
<td>3701</td>
</tr>
<tr>
<td>312E</td>
<td>2003</td>
<td>2802</td>
<td>4911</td>
<td>4908</td>
<td>3656</td>
</tr>
<tr>
<td>3B1</td>
<td>2114</td>
<td>2576</td>
<td>4515</td>
<td>5336</td>
<td>3635</td>
</tr>
<tr>
<td>3A21</td>
<td>2540</td>
<td>2456</td>
<td>4143</td>
<td>4848</td>
<td>3497</td>
</tr>
<tr>
<td>W-01</td>
<td>1286</td>
<td>2945</td>
<td>4879</td>
<td>4711</td>
<td>3455</td>
</tr>
<tr>
<td>HP-06</td>
<td>901</td>
<td>3322</td>
<td>4485</td>
<td>4866</td>
<td>3393</td>
</tr>
<tr>
<td>M-01</td>
<td>1085</td>
<td>2551</td>
<td>5132</td>
<td>4788</td>
<td>3389</td>
</tr>
<tr>
<td>3B2</td>
<td>1985</td>
<td>2436</td>
<td>3422</td>
<td>5553</td>
<td>3349</td>
</tr>
<tr>
<td>HP-10</td>
<td>989</td>
<td>2678</td>
<td>5426</td>
<td>4138</td>
<td>3308</td>
</tr>
<tr>
<td>3111</td>
<td>2157</td>
<td>2296</td>
<td>3472</td>
<td>5131</td>
<td>3264</td>
</tr>
<tr>
<td>HP-11</td>
<td>1420</td>
<td>2569</td>
<td>4639</td>
<td>4258</td>
<td>3222</td>
</tr>
<tr>
<td>LR-04</td>
<td>1399</td>
<td>2283</td>
<td>4867</td>
<td>4234</td>
<td>3196</td>
</tr>
<tr>
<td>HP-15</td>
<td>1181</td>
<td>2890</td>
<td>4218</td>
<td>4357</td>
<td>3162</td>
</tr>
<tr>
<td>AACA120 (Check)</td>
<td>886</td>
<td>2562</td>
<td>4862</td>
<td>4299</td>
<td>3152</td>
</tr>
<tr>
<td>E-05</td>
<td>1262</td>
<td>2034</td>
<td>4453</td>
<td>4593</td>
<td>3086</td>
</tr>
<tr>
<td>AACA110 (Check)</td>
<td>1050</td>
<td>3174</td>
<td>4237</td>
<td>3667</td>
<td>3032</td>
</tr>
<tr>
<td>E-04</td>
<td>1473</td>
<td>1933</td>
<td>3904</td>
<td>4680</td>
<td>2998</td>
</tr>
<tr>
<td>LR-03</td>
<td>1304</td>
<td>2668</td>
<td>4029</td>
<td>3794</td>
<td>2949</td>
</tr>
<tr>
<td>HP-09</td>
<td>1295</td>
<td>2111</td>
<td>3340</td>
<td>4274</td>
<td>2755</td>
</tr>
<tr>
<td>HP-08</td>
<td>1069</td>
<td>1908</td>
<td>3383</td>
<td>4065</td>
<td>2606</td>
</tr>
<tr>
<td>Grand Mean</td>
<td>1466</td>
<td>2652</td>
<td>4379</td>
<td>4639</td>
<td></td>
</tr>
</tbody>
</table>
Field Selection

- Medium to light well-drained soils with pH 5.5 – 6.8
- Deep sands require intense fertility program
- Avoid fields with excessive wild radish. Wild radish mixed with carinata seed will reduce oil quality and attract price dockage
- Avoid fields planted with carinata or other Brassicas in the past 12-24 months. Rotate with cereals.
- Carinata is susceptible to herbicides (Cadre, Strongarm) used in cotton-peanut rotations. Consider field herbicide history before planting and do not seed in fields where there is a herbicide carryover risk
Crop Rotation
Cadre effect on carinata growth (Santa Rosa County, FL, 2016)

Source: Ramon Leon
Field Preparation

Tillage

- Conventional, minimum, or no-till
- Firm with roller if using deep tillage or chisel plow
- Minimum stubble height with no-till
- Level seed bed
- Localized compaction determines root and subsequent shoot growth
No till fields should have winter weeds killed before planting or immediately afterwards.

No-till into killed bahiagrass
Manage thatch to maximize seed-soil contact.
Effect of tillage method on carinata yield

Quincy, FL, 2015 and 2016

Tillage Method
- Chisel
- Disk
- No Till

Seed yield (lb/acre)
- 0
- 500
- 1000
- 1500
- 2000
- 2500
- 3000
- 3500

2015
2016

Tillage Method

Seed yield (lb/acre)
Soil Compaction differs with Tillage Method

Penetration Resistance Cone Index (MPa)

Depth (cm)

Chisel Disk Notill
- November 1-30
- November 1-15 is optimum
 - Maximize yield potential
 - Reduce pest and disease incidence
 - Timely harvest allowing for on-time planting of next crop
Planting date

Quincy, FL, March 2014

Nov. PD Dec. PD Oct. PD
Planting date effect on carinata yield and oil yield

Quincy, FL, 2014

<table>
<thead>
<tr>
<th>Planting date</th>
<th>Yield</th>
<th>Oil content</th>
<th>Oil Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/acre</td>
<td>%</td>
<td>gal/acre</td>
</tr>
<tr>
<td>Oct. 21</td>
<td>1167 b</td>
<td>38 b</td>
<td>66 b</td>
</tr>
<tr>
<td>Nov. 13</td>
<td>3559 a</td>
<td>40 a</td>
<td>212 a</td>
</tr>
<tr>
<td>Dec. 13</td>
<td>1550 b</td>
<td>39 ab</td>
<td>90 b</td>
</tr>
<tr>
<td>LSD</td>
<td>858</td>
<td>1.71</td>
<td>462</td>
</tr>
</tbody>
</table>

† Within columns, means followed by the same letter are not different ($P > 0.05$)
Shifting the Planting Window with New Genetics

2016/2017 study

- Entries
 - 20.008 (cold tolerant)
 - 40.008 (cold tolerant)
 - Commercial check (Avanza 641)

- Three planting dates
 - 10/16/2016
 - 11/1/2016
 - 11/18/2016
Crop establishment

Depth

½ - ¾ inch - deeper with sandy soil

Seeding rate

5-6 lbs/ac, depending on seeder

Row spacing

7-14 inch
- Shallow seeding into a firm, moist seedbed
- Shallow seeding depth require adequate moisture in top 1”
- Post-rainfall soil crusting form a physical barrier to emergence (residue management)

Source: Chris Bliss
Row spacing effect on canopy architecture
Row spacing and seeding rate effects on carinata yield

Quincy, FL, 2014
Row spacing and seeding rate effects on carinata yield

Quincy, FL, 2016

<table>
<thead>
<tr>
<th>Seeding rate (lb/acre)</th>
<th>Row spacing (inches)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>2726</td>
<td>3056</td>
</tr>
<tr>
<td>5.4</td>
<td>2891</td>
<td>2806</td>
</tr>
<tr>
<td>8.0</td>
<td>3399</td>
<td>2921</td>
</tr>
<tr>
<td>10.7</td>
<td>3046</td>
<td>2433</td>
</tr>
<tr>
<td>Mean</td>
<td>3016 a</td>
<td>2804 b</td>
</tr>
</tbody>
</table>
Harvest Management

- Seed moisture will decrease quickly after physiological maturity
- Pods and branches will continue to dry and appear brown
- Main stem will remain slightly green
- Harvest at 8-10% seed moisture
- Harvest aid for desiccation of late pods and stem
- Proper set-up of combines is a necessity – check manual for screen size and settings
Harvest methods that accelerate seed dry-down and harvest would facilitate the timely planting of summer crops in the Southeast US.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13-May-15</td>
<td>13-May-15</td>
<td>27-Apr-16</td>
<td>27-Apr-16</td>
</tr>
<tr>
<td>7</td>
<td>13-May-15</td>
<td>20-May-15</td>
<td>27-Apr-16</td>
<td>04-May-16</td>
</tr>
<tr>
<td>14</td>
<td>20-May-15</td>
<td>27-May-15</td>
<td>04-May-16</td>
<td>11-May-16</td>
</tr>
<tr>
<td>21</td>
<td>27-May-15</td>
<td>3-Jun-15</td>
<td>11-May-16</td>
<td>18-May-16</td>
</tr>
<tr>
<td>28</td>
<td>03-Jun-15</td>
<td>10-Jun-15</td>
<td>18-May-16</td>
<td>25-May-16</td>
</tr>
</tbody>
</table>

Carinata Harvest Management
Harvest Management

Staging carinata for chemical desiccation

Desiccated May 13 2015

Harvested May 20 2015

50% seed MC

23% seed MC
Harvest Management

Staging carinata for chemical desiccation

Desiccated May 27 2015

19% seed MC

Harvested June 3 2015

16% seed MC
Harvest Management

Staging carinata for chemical desiccation

May 13 2015
May 20 2015
May 27 2015
June 3 2015
June 10 2015

50%
35%
25%
14%
10.5%
Carinata Harvest Management

Staging carinata for chemical desiccation
> 70% of seeds are physiologically mature

- Pods are tan to brown
 - Seeds are yellow/brown

- Pods are yellow to light brown
 - Seeds are light yellow
 - Stems are light green

- Pods are light green to yellow
 - Seeds are green to light yellow
Chemical desiccation effects on yield

Carinata Harvest Management

Seed yield (kg ha\(^{-1}\))

- 2015 treated carinata
- 2015 non-treated carinata
- 2016 treated carinata
- 2016 non-treated carinata

Days after physiological maturity

0 7 14 21 28
Carinata Harvest Management

Chemical desiccation effects on harvest moisture

Days after physiological maturity

- 0
- 7
- 14
- 21
- 28

Moisture at harvest (%)

- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80

Treated carinata
Non-treated carinata
7-day total rainfall

Rainfall during treatment period (cm/7 day)

- 0
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16

1.3% per day
2.2% per day
Chemical desiccation effects on seed loss

Days after physiological maturity

Seed loss (kg ha$^{-1}$)

2015 treated carinata
2016 treated carinata
2015 non-treated carinata
2016 non-treated carinata
Carinata Harvest Management

Chemical desiccation effects on 1000 seed weight

Days after physiological maturity

TSW (g)

2015 treated carinata
2016 treated carinata
2015 non-treated carinata
2016 non-treated carinata

Days after physiological maturity
Carinata Harvest Management

Chemical desiccation effects on oil content

Days after physiological maturity

Oil content (%)

Days after physiological maturity

Erucic acid (%)

Days after physiological maturity
Chemical desiccation effects on oil yield

Carinata Harvest Management

2015 treated carinata
2016 treated carinata
2015 non-treated carinata
2016 non-treated carinata

Days after physiological maturity
0 7 14 21 28
Oil yield (liters ha\(^{-1}\))
0
200
400
600
800
1000
1200
1400
1600
1800
2000
Use machine settings and screens for rapeseed outlined in the operator’s manual and fine-tuned for conditions in the field.
Harvest Management

2016/2017 study

- Two contact desiccants
 1. Reglone (diquat dibromide)
 2. Paraquat
- Two systemic desiccants
 1. Sharpen (saflufenacil)
 2. Roundup (glyphosate)
- applied at 1x and 2x label rates
- 7, 14, 21 and 28 days post physiological maturity
Plant Growth Regulators

Response of carinata to plant growth regulators during the 2015/2016 growing season, Quincy, Fl.
Plant Growth Regulators

AGR044 vegetative stage

- **0** ppm
- **10 ppm**
- **30 ppm**

AGR044 bolting

- **1.22**
- **1.29**
- **2.4**
- **2.11**
- **2.19**
- **2.25**
- **3.3**
- **3.1**
- **3.17**
- **3.24**
- **4.3**
- **4.7**

A120 vegetative stage

Plant height (cm)

- **0**
- **20**
- **40**
- **60**
- **80**
- **100**
- **120**
- **140**
- **160**

A120 bolting

Date

- **1.22**
- **1.29**
- **2.4**
- **2.11**
- **2.19**
- **2.25**
- **3.3**
- **3.1**
- **3.17**
- **3.24**
- **4.3**
- **4.7**

A120 bolting

AGR044 bolting
Plant Growth Regulators

Vegetative stage

Paclobutrazol (ppm)

Seed yield per plant (g)

Bolting

A120

AGR044

Paclobutrazol (ppm)
Plant Growth Regulators

2016/2017 study

- Three growth regulators:
 1. Cycocel (Chlormequat Chloride)
 2. Mep42 (Mepiquat Chloride)
 3. Paczol (Paclobutrazol)

- Application rate
 - 0.5, 1 and 2x label rates
 - 5, 10 leaf stage and bolting
Key Management Strategies for High Yields

- Rotations (winter crop before soybean, sorghum, sesame, etc., ALS herbicides?)
- Variety selection - yield, maturity
- Fertility (soil test P, K, Ca, Mg, micros, pH)
- Planting date (Nov. 1-15)
- Chisel plough or deep tillage (10-20 bu/ac increase)
- Seed at 5-6 lb/A into a firm, moist seedbed ½ to ¾” deep
- Use 14” row spacings (10-40 bu/ac increase over 7 or 21” rows)
- Insect and disease control- scout and apply pesticides as needed
- Direct combining at 8-10% moisture, desiccation can be used to hasten harvest maturity
UF Carinata Team

<table>
<thead>
<tr>
<th>Location</th>
<th>People</th>
<th>Research Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFREC, Marianna</td>
<td>N. DiLorenzo</td>
<td>Ruminant nutrition, Animal development</td>
</tr>
<tr>
<td>WFREC, Jay</td>
<td>R. Leon, M. Mulvaney</td>
<td>Herbicide chemistries, Crop protection, Agronomy Variety trial</td>
</tr>
<tr>
<td>SVAEC, Live Oak</td>
<td>P. Troy</td>
<td>Agronomy Variety trial</td>
</tr>
<tr>
<td>PSREU, Citra</td>
<td>N. Dufault, B. Colvin</td>
<td>Pathology, Agronomy Variety trial</td>
</tr>
</tbody>
</table>